AlignAIR Logo
Documentation

Examples Gallery

Explore real-world examples of AlignAIR in action. See input sequences, commands, and expected outputs for different use cases.

Example Categories

Basic Analysis

Single sequence processing

Batch Processing

Large dataset analysis

Custom Parameters

Optimized configurations

Advanced

Complex workflows

Example 1: Basic Heavy Chain Analysis

Single sequence V(D)J assignment with default parameters

📥 Input

Input File (sequences.csv):
sequence_id,sequence seq_001,CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTAAAGCCT... seq_002,GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTAAAGCCT...
Command:
python app.py run \ --model-checkpoint=/app/pretrained_models/IGH_S5F_576 \ --chain-type=heavy \ --sequences=/data/input/sequences.csv \ --save-path=/data/output/results

📤 Expected Output

Output File (results.csv):
sequence_id,v_call,d_call,j_call,productive seq_001,IGHV1-2*01,IGHD3-3*01,IGHJ4*01,True seq_002,IGHV1-3*01,IGHD2-2*01,IGHJ6*01,True
Processing Details
• 2 sequences processed
• Default thresholds used (V:0.75, D:0.3, J:0.8)
• Both sequences are productive

Example 2: Light Chain with Custom Thresholds

High-stringency analysis for clean data

📥 Setup

Use Case:
High-quality light chain sequences from flow-sorted B cells. Using stricter thresholds for precise allele calling.
Command:
python app.py run \ --model-checkpoint=/app/pretrained_models/IGL_S5F_576 \ --chain-type=light \ --sequences=/data/input/light_chains.csv \ --save-path=/data/output/light_results \ --v-allele-threshold=0.9 \ --j-allele-threshold=0.85 \ --airr-format

📊 Results Analysis

Threshold Impact:
V calls with default (0.75):1,850 calls
V calls with strict (0.9):1,650 calls
Higher confidence, fewer ambiguous calls
Output Format:
Full AIRR Schema with standardized column names for downstream analysis pipelines.

Example 3: Large Dataset Processing

Optimized parameters for 100K+ sequences

⚡ Performance Setup

Optimized Command:
python app.py run \ --model-checkpoint=/app/pretrained_models/IGH_S5F_576 \ --chain-type=heavy \ --sequences=/data/input/large_dataset.csv \ --save-path=/data/output/batch_results \ --batch-size=4096 \ --fix-orientation
Performance Tips:
Increased batch size to 4096
Enabled orientation fixing
GPU memory: 16GB+

📈 Benchmark Results

Processing Times:
100K sequences45 minutes
500K sequences3.5 hours
Resource Usage:
12GB
GPU Memory
95%
GPU Utilization

🚀 Quick Start Templates

Standard Heavy Chain

python app.py run \ --model-checkpoint=/app/pretrained_models/IGH_S5F_576 \ --chain-type=heavy \ --sequences=/data/input/sequences.csv \ --save-path=/data/output

High-Quality Light Chain

python app.py run \ --model-checkpoint=/app/pretrained_models/IGL_S5F_576 \ --chain-type=light \ --sequences=/data/input/light_chains.csv \ --save-path=/data/output \ --v-allele-threshold=0.85 \ --j-allele-threshold=0.9 \ --airr-format

Ready to Try These Examples?

Use these examples as starting points for your own AlignAIR analyses. Modify parameters based on your specific data and requirements.

© 2025 AlignAIR. All rights reserved.Advancing computational biology through AI